
bcachefs: Principles of Operation

Kent Overstreet

Contents

1 Introduction and overview 2
1.1 Performance overview . 2
1.2 Bucket based allocation . 3

2 Feature overview 4
2.1 IO path options . 4

2.1.1 Checksumming . 4
2.1.2 Encryption . 4
2.1.3 Compression . 5

2.2 Multiple devices . 5
2.2.1 Replication . 6
2.2.2 Erasure coding . 6
2.2.3 Device labels and targets 6
2.2.4 Caching . 7
2.2.5 Durability . 7

2.3 Reflink . 8
2.4 Inline data extents . 8
2.5 Subvolumes and snapshots . 8
2.6 Quotas . 9

3 Management 9
3.1 Formatting . 9
3.2 Mounting . 9
3.3 Fsck . 10
3.4 Status of data . 10
3.5 Journal . 10
3.6 Device management . 11

3.6.1 Filesystem resize . 11
3.6.2 Device add/removal . 11

3.7 Data management . 12
3.7.1 Data rereplicate . 12
3.7.2 Rebalance . 12
3.7.3 Scrub . 12

1

4 Options 12
4.1 File and directory options . 12
4.2 Full option list . 13
4.3 Error actions . 15
4.4 Checksum types . 16
4.5 Compression types . 16
4.6 String hash types . 16

5 Debugging tools 16
5.1 Sysfs interface . 16

5.1.1 Options . 16
5.1.2 Time stats . 17
5.1.3 Internals . 19
5.1.4 Unit and performance tests 19

5.2 Debugfs interface . 20
5.3 Listing and dumping filesystem metadata 20

5.3.1 bcachefs show-super . 20
5.3.2 bcachefs list . 20
5.3.3 bcachefs list journal . 20
5.3.4 bcachefs dump . 20

6 ioctl interface 21

7 On disk format 22
7.1 Superblock . 22
7.2 Journal . 23
7.3 Btrees . 24
7.4 Btree keys . 24

1 Introduction and overview

Bcachefs is a modern, general purpose, copy on write filesystem descended from
bcache, a block layer cache.

The internal architecture is very different from most existing filesystems
where the inode is central and many data structures hang off of the inode.
Instead, bcachefs is architected more like a filesystem on top of a relational
database, with tables for the different filesystem data types - extents, inodes,
dirents, xattrs, et cetera.

bcachefs supports almost all of the same features as other modern COW
filesystems, such as ZFS and btrfs, but in general with a cleaner, simpler, higher
performance design.

1.1 Performance overview

The core of the architecture is a very high performance and very low latency b+
tree, which also is not a conventional b+ tree but more of hybrid, taking concepts

2

from compacting data structures: btree nodes are very large, log structured, and
compacted (resorted) as necessary in memory. This means our b+ trees are very
shallow compared to other filesystems.

What this means for the end user is that since we require very few seeks or
disk reads, filesystem latency is extremely good - especially cache cold filesystem
latency, which does not show up in most benchmarks but has a huge impact
on real world performance, as well as how fast the system ”feels” in normal
interactive usage. Latency has been a major focus throughout the codebase -
notably, we have assertions that we never hold b+ tree locks while doing IO,
and the btree transaction layer makes it easily to aggressively drop and retake
locks as needed - one major goal of bcachefs is to be the first general purpose
soft realtime filesystem.

Additionally, unlike other COW btrees, btree updates are journalled. This
greatly improves our write efficiency on random update workloads, as it means
btree writes are only done when we have a large block of updates, or when
required by memory reclaim or journal reclaim.

1.2 Bucket based allocation

As mentioned bcachefs is descended from bcache, where the ability to efficiently
invalidate cached data and reuse disk space was a core design requirement. To
make this possible the allocator divides the disk up into buckets, typically 512k
to 2M but possibly larger or smaller. Buckets and data pointers have generation
numbers: we can reuse a bucket with cached data in it without finding and
deleting all the data pointers by incrementing the generation number.

In keeping with the copy-on-write theme of avoiding update in place wher-
ever possible, we never rewrite or overwrite data within a bucket - when we
allocate a bucket, we write to it sequentially and then we don’t write to it again
until the bucket has been invalidated and the generation number incremented.

This means we require a copying garbage collector to deal with internal
fragmentation, when patterns of random writes leave us with many buckets
that are partially empty (because the data they contained was overwritten) -
copy GC evacuates buckets that are mostly empty by writing the data they
contain to new buckets. This also means that we need to reserve space on the
device for the copy GC reserve when formatting - typically 8% or 12%.

There are some advantages to structuring the allocator this way, besides
being able to support cached data:

� By maintaining multiple write points that are writing to different buckets,
we’re able to easily and naturally segregate unrelated IO from different
processes, which helps greatly with fragmentation.

� The fast path of the allocator is essentially a simple bump allocator - the
disk space allocation is extremely fast

� Fragmentation is generally a non issue unless copygc has to kick in, and it
usually doesn’t under typical usage patterns. The allocator and copygc are

3

doing essentially the same things as the flash translation layer in SSDs, but
within the filesystem we have much greater visibility into where writes are
coming from and how to segregate them, as well as which data is actually
live - performance is generally more predictable than with SSDs under
similar usage patterns.

� The same algorithms will in the future be used for managing SMR hard
drives directly, avoiding the translation layer in the hard drive - doing
this work within the filesystem should give much better performance and
much more predictable latency.

2 Feature overview

2.1 IO path options

Most options that control the IO path can be set at either the filesystem level
or on individual inodes (files and directories). When set on a directory via the
bcachefs attr command, they will be automatically applied recursively.

2.1.1 Checksumming

bcachefs supports both metadata and data checksumming - crc32c by default,
but stronger checksums are available as well. Enabling data checksumming
incurs some performance overhead - besides the checksum calculation, writes
have to be bounced for checksum stability (Linux generally cannot guarantee
that the buffer being written is not modified in flight), but reads generally do
not have to be bounced.

Checksum granularity in bcachefs is at the level of individual extents, which
results in smaller metadata but means we have to read entire extents in order
to verify the checksum. By default, checksummed and compressed extents are
capped at 64k. For most applications and usage scenarios this is an ideal trade
off, but small random O DIRECT reads will incur significant overhead. In the
future, checksum granularity will be a per-inode option.

2.1.2 Encryption

bcachefs supports authenticated (AEAD style) encryption - ChaCha20/Poly1305.
When encryption is enabled, the poly1305 MAC replaces the normal data and
metadata checksums. This style of encryption is superior to typical block layer
or filesystem level encryption (usually AES-XTS), which only operates on blocks
and doesn’t have a way to store nonces or MACs. In contrast, we store a nonce
and cryptographic MAC alongside data pointers - meaning we have a chain of
trust up to the superblock (or journal, in the case of unclean shutdowns) and
can definitely tell if metadata has been modified, dropped, or replaced with an
earlier version - replay attacks are not possible.

4

Encryption can only be specified for the entire filesystem, not per file or
directory - this is because metadata blocks do not belong to a particular file.
All metadata except for the superblock is encrypted.

In the future we’ll probably add AES-GCM for platforms that have hard-
ware acceleration for AES, but in the meantime software implementations of
ChaCha20 are also quite fast on most platforms.

scrypt is used for the key derivation function - for converting the user
supplied passphrase to an encryption key.

To format a filesystem with encryption, use

bcachefs format --encrypted /dev/sda1

You will be prompted for a passphrase. Then, to use an encrypted filesystem
use the command

bcachefs unlock /dev/sda1

You will be prompted for the passphrase and the encryption key will be
added to your in-kernel keyring; mount, fsck and other commands will then
work as usual.

The passphrase on an existing encrypted filesystem can be changed with the
bcachefs set-passphrase command. To permanently unlock an encrypted
filesystem, use the bcachefs remove-passphrase command - this can be useful
when dumping filesystem metadata for debugging by the developers.

There is a wide macs option which controls the size of the cryptographic
MACs stored on disk. By default, only 80 bits are stored, which should be
sufficient security for most applications. With the wide macs option enabled we
store the full 128 bit MAC, at the cost of making extents 8 bytes bigger.

2.1.3 Compression

bcachefs supports gzip, lz4 and zstd compression. As with data checksumming,
we compress entire extents, not individual disk blocks - this gives us better
compression ratios than other filesystems, at the cost of reduced small random
read performance.

Data can also be compressed or recompressed with a different algorithm in
the background by the rebalance thread, if the background compression option
is set.

2.2 Multiple devices

bcachefs is a multi-device filesystem. Devices need not be the same size: by
default, the allocator will stripe across all available devices but biasing in favor
of the devices with more free space, so that all devices in the filesystem fill up at
the same rate. Devices need not have the same performance characteristics: we
track device IO latency and direct reads to the device that is currently fastest.

5

2.2.1 Replication

bcachefs supports standard RAID1/10 style redundancy with the data replicas

and metadata replicas options. Layout is not fixed as with RAID10: a given
extent can be replicated across any set of devices; the bcachefs fs usage com-
mand shows how data is replicated within a filesystem.

2.2.2 Erasure coding

bcachefs also supports Reed-Solomon erasure coding - the same algorithm used
by most RAID5/6 implementations) When enabled with the ec option, the
desired redundancy is taken from the data replicas option - erasure coding of
metadata is not supported.

Erasure coding works significantly differently from both conventional RAID
implementations and other filesystems with similar features. In conventional
RAID, the ”write hole” is a significant problem - doing a small write within a
stripe requires the P and Q (recovery) blocks to be updated as well, and since
those writes cannot be done atomically there is a window where the P and Q
blocks are inconsistent - meaning that if the system crashes and recovers with
a drive missing, reconstruct reads for unrelated data within that stripe will be
corrupted.

ZFS avoids this by fragmenting individual writes so that every write be-
comes a new stripe - this works, but the fragmentation has a negative effect on
performance: metadata becomes bigger, and both read and write requests are
excessively fragmented. Btrfs’s erasure coding implementation is more conven-
tional, and still subject to the write hole problem.

bcachefs’s erasure coding takes advantage of our copy on write nature -
since updating stripes in place is a problem, we simply don’t do that. And since
excessively small stripes is a problem for fragmentation, we don’t erasure code
individual extents, we erasure code entire buckets - taking advantage of bucket
based allocation and copying garbage collection.

When erasure coding is enabled, writes are initially replicated, but one of
the replicas is allocated from a bucket that is queued up to be part of a new
stripe. When we finish filling up the new stripe, we write out the P and Q
buckets and then drop the extra replicas for all the data within that stripe - the
effect is similar to full data journalling, and it means that after erasure coding
is done the layout of our data on disk is ideal.

Since disks have write caches that are only flushed when we issue a cache
flush command - which we only do on journal commit - if we can tweak the
allocator so that the buckets used for the extra replicas are reused (and then
overwritten again) immediately, this full data journalling should have negligible
overhead - this optimization is not implemented yet, however.

2.2.3 Device labels and targets

By default, writes are striped across all devices in a filesystem, but they may be
directed to a specific device or set of devices with the various target options. The

6

allocator only prefers to allocate from devices matching the specified target; if
those devices are full, it will fall back to allocating from any device in the
filesystem.

Target options may refer to a device directly, e.g. foreground target=/dev/sda1,
or they may refer to a device label. A device label is a path delimited by periods
- e.g. ssd.ssd1 (and labels need not be unique). This gives us ways of referring
to multiple devices in target options: If we specify ssd in a target option, that
will refer to all devices with the label ssd or labels that start with ssd. (e.g.
ssd.ssd1, ssd.ssd2).

Four target options exist. These options all may be set at the filesystem
level (at format time, at mount time, or at runtime via sysfs), or on a particular
file or directory:

foreground target: normal foreground data writes, and metadata if
metadata target is not set

metadata target: btree writes

background target: If set, user data (not metadata) will be moved to this
target in the background

promote target: If set, a cached copy will be added to this target on read, if
none exists

2.2.4 Caching

When an extent has multiple copies on different devices, some of those copies
may be marked as cached. Buckets containing only cached data are discarded
as needed by the allocator in LRU order.

When data is moved from one device to another according to the
background target option, the original copy is left in place but marked as
cached. With the promote target option, the original copy is left unchanged
and the new copy on the promote target device is marked as cached.

To do writeback caching, set foreground target and promote target to
the cache device, and background target to the backing device. To do writearound
caching, set foreground target to the backing device and promote target to
the cache device.

2.2.5 Durability

Some devices may be considered to be more reliable than others. For example,
we might have a filesystem composed of a hardware RAID array and several
NVME flash devices, to be used as cache. We can set replicas=2 so that losing
any of the NVME flash devices will not cause us to lose data, and then addi-
tionally we can set durability=2 for the hardware RAID device to tell bcachefs
that we don’t need extra replicas for data on that device - data on that device
will count as two replicas, not just one.

7

The durability option can also be used for writethrough caching: by setting
durability=0 for a device, it can be used as a cache and only as a cache - bcachefs
won’t consider copies on that device to count towards the number of replicas
we’re supposed to keep.

2.3 Reflink

bcachefs supports reflink, similarly to other filesystems with the same feature.
cp –reflink will create a copy that shares the underlying storage. Reading from
that file will become slightly slower - the extent pointing to that data is moved
to the reflink btree (with a refcount added) and in the extents btree we leave a
key that points to the indirect extent in the reflink btree, meaning that we now
have to do two btree lookups to read from that data instead of just one.

2.4 Inline data extents

bcachefs supports inline data extents, controlled by the inline data option (on
by default). When the end of a file is being written and is smaller than half of
the filesystem blocksize, it will be written as an inline data extent. Inline data
extents can also be reflinked (moved to the reflink btree with a refcount added):
as a todo item we also intend to support compressed inline data extents.

2.5 Subvolumes and snapshots

bcachefs supports subvolumes and snapshots with a similar userspace interface
as btrfs. A new subvolume may be created empty, or it may be created as a
snapshot of another subvolume. Snapshots are writeable and may be snapshot-
ted again, creating a tree of snapshots.

Snapshots are very cheap to create: they’re not based on cloning of COW
btrees as with btrfs, but instead are based on versioning of individual keys in
the btrees. Many thousands or millions of snapshots can be created, with the
only limitation being disk space.

The following subcommands exist for managing subvolumes and snapshots:

� bcachefs subvolume create: Create a new, empty subvolume

� bcachefs subvolume destroy: Delete an existing subvolume or snapshot

� bcachefs subvolume snapshot: Create a snapshot of an existing sub-
volume

A subvolume can also be deleting with a normal rmdir after deleting all
the contents, as with rm -rf. Still to be implemented: read-only snapshots,
recursive snapshot creation, and a method for recursively listing subvolumes.

8

2.6 Quotas

bcachefs supports conventional user/group/project quotas. Quotas do not cur-
rently apply to snapshot subvolumes, because if a file changes ownership in the
snapshot it would be ambiguous as to what quota data within that file should
be charged to.

When a directory has a project ID set it is inherited automatically by de-
scendants on creation and rename. When renaming a directory would cause the
project ID to change we return -EXDEV so that the move is done file by file,
so that the project ID is propagated correctly to descendants - thus, project
quotas can be used as subdirectory quotas.

3 Management

3.1 Formatting

To format a new bcachefs filesystem use the subcommand bcachefs format,
or mkfs.bcachefs. All persistent filesystem-wide options can be specified at
format time. For an example of a multi device filesystem with compression,
encryption, replication and writeback caching:

bcachefs format --compression=lz4 \

--encrypted \

--replicas=2 \

--label=ssd.ssd1 /dev/sda \

--label=ssd.ssd2 /dev/sdb \

--label=hdd.hdd1 /dev/sdc \

--label=hdd.hdd2 /dev/sdd \

--label=hdd.hdd3 /dev/sde \

--label=hdd.hdd4 /dev/sdf \

--foreground_target=ssd \

--promote_target=ssd \

--background_target=hdd

3.2 Mounting

To mount a multi device filesystem, there are two options. You can specify all
component devices, separated by hyphens, e.g.

mount -t bcachefs /dev/sda:/dev/sdb:/dev/sdc /mnt

Or, use the mount.bcachefs tool to mount by filesystem UUID. Still todo: im-
prove the mount.bcachefs tool to support mounting by filesystem label.

No special handling is needed for recovering from unclean shutdown. Journal
replay happens automatically, and diagnostic messages in the dmesg log will
indicate whether recovery was from clean or unclean shutdown.

9

The -o degraded option will allow a filesystem to be mounted without all
the the devices, but will fail if data would be missing. The -o very degraded

can be used to attempt mounting when data would be missing.
Also relevant is the -o nochanges option. It disallows any and all writes to

the underlying devices, pinning dirty data in memory as necessary if for example
journal replay was necessary - think of it as a ”super read-only” mode. It can
be used for data recovery, and for testing version upgrades.

The -o verbose enables additional log output during the mount process.

3.3 Fsck

It is possible to run fsck either in userspace with the bcachefs fsck subcom-
mand (also available as fsck.bcachefs, or in the kernel while mounting by
specifying the -o fsck mount option. In either case the exact same fsck imple-
mentation is being run, only the environment is different. Running fsck in the
kernel at mount time has the advantage of somewhat better performance, while
running in userspace has the ability to be stopped with ctrl-c and can prompt
the user for fixing errors. To fix errors while running fsck in the kernel, use the
-o fix errors option.

The -n option passed to fsck implies the -o nochanges option; bcachefs
fsck -ny can be used to test filesystem repair in dry-run mode.

3.4 Status of data

The bcachefs fs usage may be used to display filesystem usage broken out
in various ways. Data usage is broken out by type: superblock, journal, btree,
data, cached data, and parity, and by which sets of devices extents are replicated
across. We also give per-device usage which includes fragmentation due to
partially used buckets.

3.5 Journal

The journal has a number of tunables that affect filesystem performance. Jour-
nal commits are fairly expensive operations as they require issuing FLUSH and
FUA operations to the underlying devices. By default, we issue a journal flush
one second after a filesystem update has been done; this is controlled with the
journal flush delay option, which takes a parameter in milliseconds.

Filesystem sync and fsync operations issue journal flushes; this can be dis-
abled with the journal flush disabled option - the journal flush delay

option will still apply, and in the event of a system crash we will never lose
more than (by default) one second of work. This option may be useful on a
personal workstation or laptop, and perhaps less appropriate on a server.

The journal reclaim thread runs in the background, kicking off btree node
writes and btree key cache flushes to free up space in the journal. Even in the
absence of space pressure it will run slowly in the background: this is controlled
by the journal reclaim delay parameter, with a default of 100 milliseconds.

10

The journal should be sized sufficiently that bursts of activity do not fill up
the journal too quickly; also, a larger journal mean that we can queue up larger
btree writes. The bcachefs device resize-journal can be used for resizing
the journal on disk on a particular device - it can be used on a mounted or
unmounted filesystem.

In the future, we should implement a method to see how much space is
currently utilized in the journal.

3.6 Device management

3.6.1 Filesystem resize

A filesystem can be resized on a particular device with the bcachefs device

resize subcommand. Currently only growing is supported, not shrinking.

3.6.2 Device add/removal

The following subcommands exist for adding and removing devices from a
mounted filesystem:

� bcachefs device add: Formats and adds a new device to an existing
filesystem.

� bcachefs device remove: Permenantly removes a device from an exist-
ing filesystem.

� bcachefs device online: Connects a device to a running filesystem that
was mounted without it (i.e. in degraded mode)

� bcachefs device offline: Disconnects a device from a mounted filesys-
tem without removing it.

� bcachefs device evacuate: Migrates data off of a particular device to
prepare for removal, setting it read-only if necessary.

� bcachefs device set-state: Changes the state of a member device:
one of rw (readwrite), ro (readonly), failed, or spare.

A failed device is considered to have 0 durability, and replicas on that
device won’t be counted towards the number of replicas an extent should
have by rereplicate - however, bcachefs will still attempt to read from
devices marked as failed.

The bcachefs device remove, bcachefs device offline and bcachefs

device set-state commands take force options for when they would leave the
filesystem degraded or with data missing. Todo: regularize and improve those
options.

11

3.7 Data management

3.7.1 Data rereplicate

The bcachefs data rereplicate command may be used to scan for extents
that have insufficient replicas and write additional replicas, e.g. after a device
has been removed from a filesystem or after replication has been enabled or
increased.

3.7.2 Rebalance

To be implemented: a command for moving data between devices to equalize
usage on each device. Not normally required because the allocator attempts
to equalize usage across devices as it stripes, but can be necessary in certain
scenarios - i.e. when a two-device filesystem with replication enabled that is
very full has a third device added.

3.7.3 Scrub

To be implemented: a command for reading all data within a filesystem and
ensuring that checksums are valid, fixing bitrot when a valid copy can be found.

4 Options

Most bcachefs options can be set filesystem wide, and a significant subset can
also be set on inodes (files and directories), overriding the global defaults.
Filesystem wide options may be set when formatting, when mounting, or at
runtime via /sys/fs/bcachefs/<uuid>/options/. When set at runtime via
sysfs the persistent options in the superblock are updated as well; when options
are passed as mount parameters the persistent options are unmodified.

4.1 File and directory options

Options set on inodes (files and directories) are automatically inherited by their
descendants, and inodes also record whether a given option was explicitly set or
inherited from their parent. When renaming a directory would cause inherited
attributes to change we fail the rename with -EXDEV, causing userspace to do
the rename file by file so that inherited attributes stay consistent.

Inode options are available as extended attributes. The options that have
been explicitly set are available under the bcachefs namespace, and the ef-
fective options (explicitly set and inherited options) are available under the
bcachefs effective namespace. Examples of listing options with the getfattr
command:

$ getfattr -d -m ’^bcachefs\.’ filename

$ getfattr -d -m ’^bcachefs_effective\.’ filename

12

Options may be set via the extended attribute interface, but it is preferable
to use the bcachefs setattr command as it will correctly propagate options
recursively.

4.2 Full option list

block size format
Filesystem block size (default 4k)

btree node size format
Btree node size, default 256k

errors format,mount,rutime
Action to take on filesystem error

metadata replicas format,mount,runtime
Number of replicas for metadata (journal and btree)

data replicas format,mount,runtime,inode
Number of replicas for user data

replicas format
Alias for both metadata replicas and data replicas

metadata checksum format,mount,runtime
Checksum type for metadata writes

data checksum format,mount,runtime,inode
Checksum type for data writes

compression format,mount,runtime,inode
Compression type

background compression format,mount,runtime,inode
Background compression type

str hash format,mount,runtime,inode
Hash function for string hash tables (directories and xattrs)

metadata target format,mount,runtime,inode
Preferred target for metadata writes

foreground target format,mount,runtime,inode
Preferred target for foreground writes

background target format,mount,runtime,inode

13

Target for data to be moved to in the background

promote target format,mount,runtime,inode
Target for data to be copied to on read

erasure code format,mount,runtime,inode
Enable erasure coding

inodes 32bit format,mount,runtime
Restrict new inode numbers to 32 bits

shard inode numbers format,mount,runtime
Use CPU id for high bits of new inode numbers.

wide macs format,mount,runtime
Store full 128 bit cryptographic MACs (default 80)

inline data format,mount,runtime
Enable inline data extents (default on)

journal flush delay format,mount,runtime
Delay in milliseconds before automatic journal commit (default 1000)

journal flush disabled format,mount,runtime
Disables journal flush on sync/fsync. journal flush delay remains in
effect, thus with the default setting not more than 1 second of work will
be lost.

journal reclaim delay format,mount,runtime
Delay in milliseconds before automatic journal reclaim

acl format,mount
Enable POSIX ACLs

usrquota format,mount
Enable user quotas

grpquota format,mount
Enable group quotas

prjquota format,mount
Enable project quotas

degraded mount
Allow mounting with data degraded

14

very degraded mount
Allow mounting with data missing

verbose mount
Extra debugging info during mount/recovery

fsck mount
Run fsck during mount

fix errors mount
Fix errors without asking during fsck

ratelimit errors mount
Ratelimit error messages during fsck

read only mount
Mount in read only mode

nochanges mount
Issue no writes, even for journal replay

norecovery mount
Don’t replay the journal (not recommended)

noexcl mount
Don’t open devices in exclusive mode

version upgrade mount
Upgrade on disk format to latest version

discard device
Enable discard/TRIM support

4.3 Error actions

The errors option is used for inconsistencies that indicate some sort of a bug.
Valid error actions are:

continue Log the error but continue normal operation

ro Emergency read only, immediately halting any changes to the filesystem on
disk

panic Immediately halt the entire machine, printing a backtrace on the system
console

15

4.4 Checksum types

Valid checksum types are:

none

crc32c (default)

crc64

4.5 Compression types

Valid compression types are:

none (default)

lz4

gzip

zstd

4.6 String hash types

Valid hash types for string hash tables are:

crc32c

crc64

siphash (default)

5 Debugging tools

5.1 Sysfs interface

Mounted filesystems are available in sysfs at /sys/fs/bcachefs/<uuid>/ with
various options, performance counters and internal debugging aids.

5.1.1 Options

Filesystem options may be viewed and changed via
/sys/fs/bcachefs/<uuid>/options/, and settings changed via sysfs will be
persistently changed in the superblock as well.

16

5.1.2 Time stats

bcachefs tracks the latency and frequency of various operations and events, with
quantiles for latency/duration in the /sys/fs/bcachefs/<uuid>/time stats/

directory.

blocked allocate

Tracks when allocating a bucket must wait because none are immediately
available, meaning the copygc thread is not keeping up with evacuating
mostly empty buckets or the allocator thread is not keeping up with in-
validating and discarding buckets.

blocked allocate open bucket

Tracks when allocating a bucket must wait because all of our handles for
pinning open buckets are in use (we statically allocate 1024).

blocked journal

Tracks when getting a journal reservation must wait, either because jour-
nal reclaim isn’t keeping up with reclaiming space in the journal, or be-
cause journal writes are taking too long to complete and we already have
too many in flight.

btree gc

Tracks when the btree gc code must walk the btree at runtime - for recal-
culating the oldest outstanding generation number of every bucket in the
btree.

btree lock contended read

btree lock contended intent

btree lock contended write

Track when taking a read, intent or write lock on a btree node must block.

btree node mem alloc

Tracks the total time to allocate memory in the btree node cache for a
new btree node.

btree node split

Tracks btree node splits - when a btree node becomes full and is split into
two new nodes

btree node compact

Tracks btree node compactions - when a btree node becomes full and needs
to be compacted on disk.

btree node merge

Tracks when two adjacent btree nodes are merged.

17

btree node sort

Tracks sorting and resorting entire btree nodes in memory, either after
reading them in from disk or for compacting prior to creating a new sorted
array of keys.

btree node read

Tracks reading in btree nodes from disk.

btree interior update foreground

Tracks foreground time for btree updates that change btree topology - i.e.
btree node splits, compactions and merges; the duration measured roughly
corresponds to lock held time.

btree interior update total

Tracks time to completion for topology changing btree updates; first they
have a foreground part that updates btree nodes in memory, then after
the new nodes are written there is a transaction phase that records an
update to an interior node or a new btree root as well as changes to the
alloc btree.

data read

Tracks the core read path - looking up a request in the extents (and possi-
bly also reflink) btree, allocating bounce buffers if necessary, issuing reads,
checksumming, decompressing, decrypting, and delivering completions.

data write

Tracks the core write path - allocating space on disk for a new write, al-
locating bounce buffers if necessary, compressing, encrypting, checksum-
ming, issuing writes, and updating the extents btree to point to the new
data.

data promote

Tracks promote operations, which happen when a read operation writes
an additional cached copy of an extent to promote target. This is done
asynchronously from the original read.

journal flush write

Tracks writing of flush journal entries to disk, which first issue cache flush
operations to the underlying devices then issue the journal writes as FUA
writes. Time is tracked starting from after all journal reservations have
released their references or the completion of the previous journal write.

journal noflush write

Tracks writing of non-flush journal entries to disk, which do not issue
cache flushes or FUA writes.

journal flush seq

Tracks time to flush a journal sequence number to disk by filesystem sync
and fsync operations, as well as the allocator prior to reusing buckets when
none that do not need flushing are available.

18

5.1.3 Internals

btree cache

dirty btree nodes

btree key cache

btree transactions

btree updates

new stripes

stripes heap

open buckets

journal debug

journal pins

io timers read

io timers write

trigger journal flush

trigger gc

prune cache

read realloc races

extent migrate done

extent migrate raced

5.1.4 Unit and performance tests

Echoing into /sys/fs/bcachefs/<uuid>/perf test runs various low level btree
tests, some intended as unit tests and others as performance tests. The syntax
is

echo <test_name> <nr_iterations> <nr_threads> > perf_test

When complete, the elapsed time will be printed in the dmesg log. The full
list of tests that can be run can be found near the bottom of fs/bcachefs/tests.c.

19

5.2 Debugfs interface

The contents of every btree, as well as various internal per-btree-node informa-
tion, are available under /sys/kernel/debug/bcachefs/<uuid>/.

For every btree, we have the following files:

btree name
Entire btree contents, one key per line

btree name-formats
Information about each btree node: the size of the packed bkey format,
how full each btree node is, number of packed and unpacked keys, and
number of nodes and failed nodes in the in-memory search trees.

btree name-bfloat-failed
For each sorted set of keys in a btree node, we construct a binary search
tree in eytzinger layout with compressed keys. Sometimes we aren’t able to
construct a correct compressed search key, which results in slower lookups;
this file lists the keys that resulted in these failed nodes.

5.3 Listing and dumping filesystem metadata

5.3.1 bcachefs show-super

This subcommand is used for examining and printing bcachefs superblocks. It
takes two optional parameters:

-l: Print superblock layout, which records the amount of space reserved for
the superblock and the locations of the backup superblocks.

-f, --fields=(fields): List of superblock sections to print, all to print all
sections.

5.3.2 bcachefs list

This subcommand gives access to the same functionality as the debugfs interface,
listing btree nodes and contents, but for offline filesystems.

5.3.3 bcachefs list journal

This subcommand lists the contents of the journal, which primarily records
btree updates ordered by when they occured.

5.3.4 bcachefs dump

This subcommand can dump all metadata in a filesystem (including multi de-
vice filesystems) as qcow2 images: when encountering issues that fsck can not
recover from and need attention from the developers, this makes it possible to
send the developers only the required metadata. Encrypted filesystems must
first be unlocked with bcachefs remove-passphrase.

20

6 ioctl interface

This section documents bcachefs-specific ioctls:

BCH IOCTL QUERY UUID

Returs the UUID of the filesystem: used to find the sysfs directory given
a path to a mounted filesystem.

BCH IOCTL FS USAGE

Queries filesystem usage, returning global counters and a list of counters
by bch replicas entry.

BCH IOCTL DEV USAGE

Queries usage for a particular device, as bucket and sector counts broken
out by data type.

BCH IOCTL READ SUPER

Returns the filesystem superblock, and optionally the superblock for a
particular device given that device’s index.

BCH IOCTL DISK ADD

Given a path to a device, adds it to a mounted and running filesystem. The
device must already have a bcachefs superblock; options and parameters
are read from the new device’s superblock and added to the member info
section of the existing filesystem’s superblock.

BCH IOCTL DISK REMOVE

Given a path to a device or a device index, attempts to remove it from
a mounted and running filesystem. This operation requires walking the
btree to remove all references to this device, and may fail if data would
become degraded or lost, unless appropriate force flags are set.

BCH IOCTL DISK ONLINE

Given a path to a device that is a member of a running filesystem (in
degraded mode), brings it back online.

BCH IOCTL DISK OFFLINE

Given a path or device index of a device in a multi device filesystem,
attempts to close it without removing it, so that the device may be re-
added later and the contents will still be available.

BCH IOCTL DISK SET STATE

BCH IOCTL DISK GET IDX

BCH IOCTL DISK RESIZE

21

BCH IOCTL DISK RESIZE JOURNAL

BCH IOCTL DATA

BCH IOCTL SUBVOLUME CREATE

BCH IOCTL SUBVOLUME DESTROY

BCHFS IOC REINHERIT ATTRS

7 On disk format

7.1 Superblock

The superblock is the first thing to be read when accessing a bcachefs filesystem.
It is located 4kb from the start of the device, with redundant copies elsewhere
- typically one immediately after the first superblock, and one at the end of the
device.

The bch sb layout records the amount of space reserved for the superblock
as well as the locations of all the superblocks. It is included with every su-
perblock, and additionally written 3584 bytes from the start of the device (512
bytes before the first superblock).

Most of the superblock is identical across each device. The exceptions are
the dev idx field, and the journal section which gives the location of the journal.

The main section of the superblock contains UUIDs, version numbers, num-
ber of devices within the filesystem and device index, block size, filesystem
creation time, and various options and settings. The superblock also has a
number of variable length sections:

BCH SB FIELD journal

List of buckets used for the journal on this device.

BCH SB FIELD members

List of member devices, as well as per-device options and settings, includ-
ing bucket size, number of buckets and time when last mounted.

BCH SB FIELD crypt

Contains the main chacha20 encryption key, encrypted by the user’s passphrase,
as well as key derivation function settings.

BCH SB FIELD replicas

Contains a list of replica entries, which are lists of devices that have extents
replicated across them.

22

BCH SB FIELD quota

Contains timelimit and warnlimit fields for each quota type (user, group
and project) and counter (space, inodes).

BCH SB FIELD disk groups

Formerly referred to as disk groups (and still is throughout the code); this
section contains device label strings and records the tree structure of label
paths, allowing a label once parsed to be referred to by integer ID by the
target options.

BCH SB FIELD clean

When the filesystem is clean, this section contains a list of journal entries
that are normally written with each journal write (struct jset): btree
roots, as well as filesystem usage and read/write counters (total amount
of data read/written to this filesystem). This allows reading the journal
to be skipped after clean shutdowns.

7.2 Journal

Every journal write (struct jset) contains a list of entries: struct jset entry.
Below are listed the various journal entry types.

BCH JSET ENTRY btree key

This entry type is used to record every btree update that happens. It
contains one or more btree keys (struct bkey), and the btree id and
level fields of jset entry record the btree ID and level the key belongs
to.

BCH JSET ENTRY btree root

This entry type is used for pointers btree roots. In the current implemen-
tation, every journal write still records every btree root, although that is
subject to change. A btree root is a bkey of type KEY TYPE btree ptr v2,
and the btree id and level fields of jset entry record the btree ID and
depth.

BCH JSET ENTRY clock

Records IO time, not wall clock time - i.e. the amount of reads and writes,
in 512 byte sectors since the filesystem was created.

BCH JSET ENTRY usage

Used for certain persistent counters: number of inodes, current maximum
key version, and sectors of persistent reservations.

BCH JSET ENTRY data usage

Stores replica entries with a usage counter, in sectors.

BCH JSET ENTRY dev usage

Stores usage counters for each device: sectors used and buckets used,
broken out by each data type.

23

7.3 Btrees

7.4 Btree keys

KEY TYPE deleted

KEY TYPE whiteout

KEY TYPE error

KEY TYPE cookie

KEY TYPE hash whiteout

KEY TYPE btree ptr

KEY TYPE extent

KEY TYPE reservation

KEY TYPE inode

KEY TYPE inode generation

KEY TYPE dirent

KEY TYPE xattr

KEY TYPE alloc

KEY TYPE quota

KEY TYPE stripe

KEY TYPE reflink p

KEY TYPE reflink v

KEY TYPE inline data

KEY TYPE btree ptr v2

KEY TYPE indirect inline data

KEY TYPE alloc v2

KEY TYPE subvolume

KEY TYPE snapshot

KEY TYPE inode v2

KEY TYPE alloc v3

24

	Introduction and overview
	Performance overview
	Bucket based allocation

	Feature overview
	IO path options
	Checksumming
	Encryption
	Compression

	Multiple devices
	Replication
	Erasure coding
	Device labels and targets
	Caching
	Durability

	Reflink
	Inline data extents
	Subvolumes and snapshots
	Quotas

	Management
	Formatting
	Mounting
	Fsck
	Status of data
	Journal
	Device management
	Filesystem resize
	Device add/removal

	Data management
	Data rereplicate
	Rebalance
	Scrub

	Options
	File and directory options
	Full option list
	Error actions
	Checksum types
	Compression types
	String hash types

	Debugging tools
	Sysfs interface
	Options
	Time stats
	Internals
	Unit and performance tests

	Debugfs interface
	Listing and dumping filesystem metadata
	bcachefs show-super
	bcachefs list
	bcachefs list_journal
	bcachefs dump

	ioctl interface
	On disk format
	Superblock
	Journal
	Btrees
	Btree keys

